Initial assessment of a model relating intratumoral genetic heterogeneity to radiological morphology

肿瘤内遗传异质性与放射学形态相关模型的初步评估

阅读:9
作者:O Noterdaeme, M Kelly, P Friend, Z Soonowalla, G Steers, M Brady

Abstract

Tumour heterogeneity has major implications for tumour development and response to therapy. Tumour heterogeneity results from mutations in the genes responsible for mismatch repair or maintenance of chromosomal stability. Cells with different genetic properties may grow at different rates and exhibit different resistance to therapeutic interventions. To date, there exists no approach to non-invasively assess tumour heterogeneity. Here we present a biologically inspired model of tumour growth, which relates intratumoral genetic heterogeneity to gross morphology visible on radiological images. The model represents the development of a tumour as a set of expanding spheres, each sphere representing a distinct clonal centre, with the sprouting of new spheres corresponding to new clonal centres. Each clonal centre may possess different characteristics relating to genetic composition, growth rate and response to treatment. We present a clinical example for which the model accurately tracks tumour growth and shows the correspondence to genetic variation (as determined by array comparative genomic hybridisation). One clinical implication of our work is that the assessment of heterogeneous tumours using Response Evaluation Criteria In Solid Tumours (RECIST) or volume measurements may not accurately reflect tumour growth, stability or the response to treatment. We believe that this is the first model linking the macro-scale appearance of tumours to their genetic composition. We anticipate that our model will provide a more informative way to assess the response of heterogeneous tumours to treatment, which is of increasing importance with the development of novel targeted anti-cancer treatments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。