Mechanisms that synergistically regulate η-secretase processing of APP and Aη-α protein levels: relevance to pathogenesis and treatment of Alzheimer's disease

协同调节 η-分泌酶处理 APP 和 Aη-α 蛋白水平的机制:与阿尔茨海默病的发病机制和治疗的相关性

阅读:12
作者:Joseph Ward, Haizhi Wang, Aleister J Saunders, Rudolph E Tanzi, Can Zhang

Abstract

The pathophysiology of Alzheimer's disease (AD) is characterized by the formation of cerebral β-amyloid plaque from a small peptide amyloid-β (Aβ). Aβ is generated from the canonical amyloid-β precursor protein (APP) proteolysis pathway through β- and γ-secretases. Decreasing Aβ levels through targeting APP processing is a very promising direction in clinical trials for AD. A novel APP processing pathway was recently identified, in which η-secretase processing of APP occurs and results in the generation of the carboxy-terminal fragment-η (CTF-η or η-CTF) (Wang et al., 2015) and Aη-α peptide (Willem et al., 2015). η-Secretase processing of APP may be up-regulated by at least two mechanisms: either through inhibition of lysosomal-cathepsin degradation pathway (Wang et al., 2015) or through inhibition of BACE1 that competes with η-secretase cleavage of APP (Willem et al., 2015). A thorough characterization of η-processing of APP is critical for a better understanding of AD pathogenesis and insights into results of clinical trials of AD. Here we further investigated η-secretase processing of APP using well-characterized cell models of AD. We found that these two mechanisms act synergistically toward increasing η-secretase processing of APP and Aη-α levels. Furthermore, we evaluated the effects of several other known secretase modulators on η-processing of APP. The results of our study should advance the understanding of pathophysiology of AD, as well as enhance the knowledge in developing effective AD treatments or interventions related to η-secretase processing of APP.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。