The effects of hypothalamic microglial activation on ventricular arrhythmias in stress cardiomyopathy

下丘脑小胶质细胞活化对应激性心肌病室性心律失常的影响

阅读:8
作者:Peng-Qi Lin, Quan-Wei Pei, Bin Li, Jie-Mei Yang, Li-Na Zou, De-Zhan Su, Jun-Pei Zhang, Hong-Peng Yin, Mbabazi Nadine, Jun-Jie Yang, Nevzorova Vera A, Khan Musawir Abbas, Zhao-Lei Jiang, Jing-Jie Li, De-Chun Yin
BACKGROUND: Stress cardiomyopathy (SCM) currently has a high incidence in older adults, and the theories regarding its causes include "catecholamine myocardial toxicity" and "sympathetic hyperactivation". However, the role of the central nervous system in the pathogenesis of SCM remains unknown. We investigated the role of microglia activation in the paraventricular hypothalamic nucleus (PVN) in the development of SCM. METHODS: An SCM model was created using male Sprague-Dawley (SD) rats, immobilized for 6 h every day for a week. Electrocardiogram, cardiac electrophysiology, and echocardiography examinations were performed to verify the changes in cardiac structure and function in rats with SCM. RNA sequencing was used to explore the changes in the hypothalamus during SCM. In addition, brain and heart tissues were collected to detect microglial activation and sympathetic activity. RESULTS: The main findings were as follows: (1) immobilization stress successfully induced SCM in SD rats; (2) microglia were significantly activated in the hypothalamus, as evidenced by cytosol thickening, increases in the number of microglial branches, and microglia enriched in the PVN; (3) in SCM, the microglia in the PVN exhibited increased central and peripheral cardiac sympathetic activity and increased the expression of neuroinflammatory factors; and (4) it is possible that inhibiting microglial activation could suppress the sympathetic activity of the central nervous system and heart and increase cardiac electrical stability in SCM rats. CONCLUSIONS: SCM was induced in SD rats by immobilization stress, acting through the activation of the hypothalamic microglia. The activated microglia were specifically enriched in the PVN, increasing the activity of the central and peripheral sympathetic nervous systems by regulating the expression of neuro-inflammatory factors, mediating dysfunction of the left ventricle, and increasing the susceptibility to ventricular arrhythmias.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。