Resolving the heterogeneous tumor-centric cellular neighborhood through multiplexed, spatial paracrine interactions in the setting of immune checkpoint blockade

在免疫检查点阻断的环境下,通过多重空间旁分泌相互作用解决异质性肿瘤中心细胞邻域

阅读:6
作者:Rachel L G Maus, Alexey L Leontovich, Raymond M Moore, Laura Becher, Wendy K Nevala, Thomas J Flotte, Ruifeng Guo, Jill Schimke, Betty A Dicke, Yiyi Yan, Svetomir N Markovic

Abstract

Direct interactions between tumor and immune cells mediate the antitumor effect of all modern cancer immunotherapeutic agents. Simultaneously, tumor cells have evolved mechanisms of evasion including the downregulation of HLA-I potentially disrupting the mechanism of action employed by many immune checkpoint inhibitors. And yet the in situ interplay between these cells within the tumor immune microenvironment (TIME) remains elusive. Recent advances in histologic multiplex bioimaging platforms have enabled in-depth molecular characterization of single cells within spatially-preserved and clinically archived tumor tissues. Herein, we applied multiplex immunofluorescence (MxIF) to excisional lymph node biopsies from 14 patients with metastatic melanoma who experienced clear objective responses to immunotherapy (7 complete response; 7 progressive disease) to determine distinguishing features of the TIME in the pretreatment setting. Distinct regions of the TIME were evaluated using 35 proteins probing tumor, immune and vasculature components across 323 fields of view. Single cell compositional analysis confirmed established prognostic immune cell types including increased prevalence of cytotoxic T cells within the tumor core FOVs of responders. Integrating single cell quantification with the spatial arrangement of cellular neighborhoods surrounding tumor cells revealed novel, spatial immune signatures capable of stratifying TIME based on clinical response. Our analysis revealed dynamic cellular composition of the TCCN based on anatomical subregion, functional expression of HLA-I by the index tumor cell and ultimately clinical response to immunotherapy. Overall, this study provides an analytical framework to resolve the cellular complexity of the TIME, increasingly relevant to the outcomes of modern cancer immunotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。