Eco-friendly synthesis of CuO/Bi2O3 nanocomposite for efficient photocatalytic degradation of rhodamine B dye

环保合成 CuO/Bi2O3 纳米复合材料以实现高效光催化降解罗丹明 B 染料

阅读:6
作者:Asfaw Negash, Lemma M Derseh, Abebe Tedla, Jemal M Yassin

Abstract

Plant-mediated synthesized materials are receiving more attention than conventional ones due to their wide availability, ease of access, simple preparation methods, environmental benign, and possess superior physicochemical properties. In this work, plant extract-mediated CuO, Bi2O3, and CuO/Bi2O3 nanocomposite samples were successfully synthesized using bamboo leaves extract as a capping agent. These materials were utilized for the photodegradation of Rhodamine B (RhB) dye, which served as a model organic dye pollutant. The physicochemical characterization techniques such as XRD, SEM-EDS, FTIR, and DRS-UV-vis spectrophotometry provide insight into the crystal structure, morphology, surface functional groups, and optical properties. These analyses confirm the effective formation of CuO, Bi2O3, and CuO/Bi2O3 materials. Surprisingly, upon calcination at 450 °C for 4 h, the color of the nanocomposite changed from pale green to gray greenish, providing evidence for the formation of the CuO in CuO/Bi2O3 nanocomposite. The photocatalytic optimization parameters such as pH (4), catalyst load (35 mg), irradiation time (180 min) and concentration of RhB (10 mg L-1) dye were investigated. By coupling CuO with Bi2O3 nanoparticles resulted in an improved photocatalytic property for the degradation of RhB dye under optimal conditions. As a result, CuO/Bi2O3 nanocomposite exhibited a significantly boosted photocatalytic degradation efficiency (95.6%) compared to pure CuO (40.2%) and Bi2O3 (80.5%) photocatalysts, with good reusability. For comparison purpose, the photocatalytic degradation of RhB dye using selected photocatalyst was evaluated under dark and sunlight systems. This eco-friendly approach holds great potential for synthesis new nanocomposite with modified properties, thereby enabling the practical application of high-efficiency photocatalysts. The plausible mechanism of the electrons and holes transfer was proposed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。