SIRT3 Regulates the ROS-FPR1/HIF-1α Axis under Hypoxic Conditions to Influence Lung Cancer Progression

SIRT3 在缺氧条件下调节 ROS-FPR1/HIF-1α 轴以影响肺癌进展

阅读:7
作者:Bo Huang, Jie Ding, HongRong Guo, HongJuan Wang, JianQun Xu, Quan Zheng, LiJun Zhou

Abstract

Hypoxia-inducible factor (HIF-1α) is a therapeutic target in lung cancer, and the deacetylase sirtuin 3 (SIRT3) is closely associated with tumorigenesis. Formyl peptide receptor 1 (FPR1) is involved in a wide range of physiopathological processes in various tumor cells. We explored whether SIRT3 affects the development of lung cancer by regulating the reactive oxygen species (ROS)-FPR1/HIF-1α axis under hypoxic conditions. The effects of SIRT3 overexpression on the levels of FPR1, HIF-1α, ROS, inflammatory factors, and cell proliferation and migration in A549 cells under hypoxic conditions were assessed in combination with the FPR1 inhibitor. BALB/c nude mice were subcutaneously injected with cancer cells transfected/untransfected with SIRT3 overexpressing lentiviral vectors. Immunohistochemistry and enzyme-linked immunosorbent assay were performed to detect SIRT3 expression and the expression levels of IL-1β, TNF-α, and IL-6, respectively, in tumor tissues. Cell proliferation, invasion, migration, and IL-1β, TNF-α, IL-6, and ROS levels were significantly higher in the Hypoxia group than in the Control group. Moreover, the mRNA and protein expression levels of SIRT3 were significantly down-regulated, whereas they were significantly up-regulated for FPR1 and HIF-1α. In contrast, SIRT3 overexpression in a hypoxic environment inhibited cell proliferation, invasion, and migration, decreased IL-1β, TNF-α, IL-6, and ROS levels, up-regulated the mRNA and protein expression levels of SIRT3, and down-regulated the mRNA and protein expression levels of FPR1 and HIF-1α. In addition, we found the same results in tumorigenic experiments in nude mice. SIRT3 in hypoxic environments may affect tumor cell proliferation, invasion, migration, and inflammation levels via the ROS-FPR1/HIF-1α axis, thereby inhibiting tumor cell development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。