Microhomology-mediated end-joining Knock-In approaches to delete the allergenic domain of trout parvalbumin beta-1. Preliminary results in F0 animals and feedback

微同源性介导的末端连接敲入方法删除鳟鱼小白蛋白 beta-1 的过敏性结构域。F0 动物的初步结果和反馈

阅读:8
作者:Veronique Lebret, Cecile Duret, Amaury Herpin, Pierre-Yves Rescan

Background

Gene editing techniques offer new opportunities to improve important traits in aquaculture. The allergenicity of fish flesh is a major problem in aquaculture. Parvalbumin (Parv) is the most prevalent fish allergen. For instance, in salmonids, a single parvalbumin beta-1 protein (parvb1) has been identified as an allergen in specific patients. Therefore, generating trout carrying two parvb1 alleles deleted from the allergenic peptide-encoding region could prevent allergies in these sensitive individuals.

Conclusions

These preliminary results indicate the potential difficulties associated with the MMEJ KI experiments performed in farmed fish. Finally, new genomic techniques in aquaculture are further discussed in the context of lively debates taking place in the European parliament regarding a possible revision of the current law that determines the legal status of farm animals modified by genome editing. Gene editing, microhomology-mediated end-joining knock-in, parvalbumin, allergenicity, trout, and genetically modified organisms (GMOs).

Methods

Here, we describe the application of the Crispr/cas9 system in an attempt to delete parvb1 exon 2 encoding the allergenic peptide and, alternatively, to replace exon 2 of parvb1 with exon2 of parvalbumin beta-2 protein (parvb2,) which does not encode the allergenic peptide. Exon skipping and swapping were pursued through microhomology-mediated end-joining (MMEJ) knock-In using specifically designed double-stranded donor DNA.

Results

Genotyping of approximately 200 F0 fingerlings originating from eggs injected with donor DNA designed for exon 2 skipping led to the identification of only one animal carrying an allele lacking exon 2. Genotyping of approximately 150 fingerlings originating from eggs injected with donor DNA for exon 2 swapping did not result in any trout carrying the expected modified allele. Conclusions: These preliminary results indicate the potential difficulties associated with the MMEJ KI experiments performed in farmed fish. Finally, new genomic techniques in aquaculture are further discussed in the context of lively debates taking place in the European parliament regarding a possible revision of the current law that determines the legal status of farm animals modified by genome editing. Gene editing, microhomology-mediated end-joining knock-in, parvalbumin, allergenicity, trout, and genetically modified organisms (GMOs).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。