Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors

使用单个纳米传感器阵列从呼出的气体中检测肺癌、乳腺癌、结直肠癌和前列腺癌

阅读:7
作者:G Peng, M Hakim, Y Y Broza, S Billan, R Abdah-Bortnyak, A Kuten, U Tisch, H Haick

Background

Tumour growth is accompanied by gene and/or protein changes that may lead to peroxidation of the cell membrane species and, hence, to the emission of volatile organic compounds (VOCs). In this study, we investigated the ability of a nanosensor array to discriminate between breath VOCs that characterise healthy states and the most widespread cancer states in the developed world: lung, breast, colorectal, and prostate cancers.

Conclusions

The reported results could lead to the development of an inexpensive, easy-to-use, portable, non-invasive tool that overcomes many of the deficiencies associated with the currently available diagnostic methods for cancer.

Methods

Exhaled alveolar breath was collected from 177 volunteers aged 20-75 years (patients with lung, colon, breast, and prostate cancers and healthy controls). Breath from cancerous subjects was collected before any treatment. The healthy population was healthy according to subjective patient's data. The breath of volunteers was examined by a tailor-made array of cross-reactive nanosensors based on organically functionalised gold nanoparticles and gas chromatography linked to the mass spectrometry technique (GC-MS).

Results

The results showed that the nanosensor array could differentiate between 'healthy' and 'cancerous' breath, and, furthermore, between the breath of patients having different cancer types. Moreover, the nanosensor array could distinguish between the breath patterns of different cancers in the same statistical analysis, irrespective of age, gender, lifestyle, and other confounding factors. The GC-MS results showed that each cancer could have a unique pattern of VOCs, when compared with healthy states, but not when compared with other cancer types. Conclusions: The reported results could lead to the development of an inexpensive, easy-to-use, portable, non-invasive tool that overcomes many of the deficiencies associated with the currently available diagnostic methods for cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。