Conclusion
Cytotoxic mechanisms of MCU-i4 in cancer cells involved enhanced glycolysis and heightened formation of ATP and ROS. It is conventionally believed that cancer cell death could be caused by inhibition of glycolysis. Our observations suggest cancer cell death could also be induced by increased glycolytic metabolism.
Methods
The effects of MCU-i4, a newly developed MCU inhibitor, on cell viability, apoptosis, cytosolic Ca2+, mitochondrial Ca2+ and potential, glycolytic rate, generation of ATP, and reactive oxygen species, were examined in breast cancer BT474 cells.
Results
MCU-i4 caused apoptotic cell death, and it decreased and increased, respectively, mitochondrial and cytosolic Ca2+ concentration. Inhibition of MCU by MCU-i4 revealed that cytosolic Ca2+ elevation resulted from endoplasmic reticulum (ER) Ca2+ release via inositol 1,4,5-trisphosphate receptors (IP3R) and ryanodine receptors (RYR). Unexpectedly, MCU-i4 enhanced glycolysis and ATP production; it also triggered a large production of reactive oxygen species (ROS) and mitochondrial membrane potential collapse.
