Benzocyclobutene-functionalized hyperbranched polysiloxane for low-k materials with good thermostability

苯并环丁烯官能化的超支化聚硅氧烷,用于具有良好热稳定性的低 k 材料

阅读:5
作者:Yunfei Shi, Jing Cai, Xueliang Wu, Yuanrong Cheng

Abstract

Although hyperbranched polysiloxanes have been extensively studied, they have limited practical applications because of their low glass transition temperatures. In this study, we synthesized benzocyclobutene-functionalized hyperbranched polysiloxane (HB-BCB) via the Piers-Rubinsztajn reaction. The synthesized material was cured and crosslinking occurred at temperatures greater than 200 °C, forming a low-k thermoset resin with high thermostability. The structure of the resin was characterized using nuclear magnetic resonance (NMR) spectroscopy, viz. 1H NMR and 13C NMR spectroscopy. 29Si NMR spectroscopy was used to calculate the degree of branching. Differential scanning calorimetry, dynamic mechanical analysis, and thermogravimetric analysis revealed that the cured resin possesses good high-temperature mechanical properties and exhibits a high thermal decomposition temperature (Td5 = 512 °C). In addition, the cured resin has a low dielectric constant (k = 2.70 at 1 MHz) and low dissipation factor (2.13 × 10-3 at 1 MHz). Thus, the prepared resin can function as a low-k material with excellent high-temperature performance. These findings indicate that the performance of crosslinked siloxane is significantly attributed to the introduction of BCB groups and the formation of the highly crosslinked structure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。