Conclusions
The use of dissociation energies generalizes the use of proton affinities for semi-quantitative predictions of relative intensities of different m/z peaks of short peptides. Further advances in this direction will pave the way for reliable quantitative predictions and, hence, for a significant improvement in robustness and accuracy of peptide and protein identification tools.
Methods
Mass spectra of the tetrapeptides AAAA, AAFA, AAVA, AFAA, AVAA, AFFA, and AVVA were measured in the collision-induced dissociation (CID) activation mode on a grid of activation times 0.05 to 100 ms and normalized collision energy 10 to 35%. The lowest energy geometries and vibrational spectra were calculated for the precursor ions and their charged and neutral fragments using density functional theory (DFT) at the TPSS/6-31G(d,p) level. Dissociation energies were calculated for all fragmentation channels leading to b- or y-fragments.
Results
It is demonstrated that m/z peaks observed in the mass spectra correspond to the fragmentation channels with the lowest dissociation energies. Using 50 kcal/mol as the cut-off value of dissociation energy, it was predicted that 28 out of 42 possible peaks in the b- and y-series of the seven tetrapeptides can be observed in mass spectra. In the experiments, 26 b- or y-peaks were observed, all of which are among the 28 predicted ones. Conclusions: The use of dissociation energies generalizes the use of proton affinities for semi-quantitative predictions of relative intensities of different m/z peaks of short peptides. Further advances in this direction will pave the way for reliable quantitative predictions and, hence, for a significant improvement in robustness and accuracy of peptide and protein identification tools.
