Adequate Time Window and Environmental Factors Supporting Retinal Graft Cell Survival in rd Mice

支持 rd 小鼠视网膜移植细胞存活的充足时间窗和环境因素

阅读:7
作者:Michiko Mandai, Kohei Homma, Satoshi Okamoto, Chikako Yamada, Akane Nomori, Masayo Takahashi

Abstract

Postnatal photoreceptor cells can be integrated into the wild-type adult retina in mice, and retinal transplantation is now one therapeutic option for retinal degenerative diseases when photoreceptor degeneration is the primary cause of the disease. The aim of this study was to specify the optimal time window during the course of retinal degeneration and to modulate the host and/or graft environment for a successful transplantation. We first studied the background features of the mice with phosphodiesterase 6b (PDE6b) gene mutation (rd; C3H/Hej) and found that the infiltration of microglia and glial fibrillary acidic protein (GFAP) expression once increased at the peak of rod death (∼2-3 weeks of age) but then reduced for a following period until gliosis began to take place with enhanced GFAP expression (∼8 weeks of age). The postnatal retinal cells (p4-p7) were successfully transplanted during this period with neurite extension into the host retina. In later transplantations (6 or 8 weeks of age), graft cells survived better in the presence of chondroitinase ABC (ChABC), which digests chondroitin sulfate proteoglycan (CSPG), an essential component of gliosis. In contrast, in earlier transplantations (4 weeks of age), graft cells survived better in the presence of valproic acid (VPA), a neural differentiating reagent, or glatiramer acetate, an immune modulator. These suggest that, immediately after the outer nuclear layer (ONL) degeneration, an inflammatory reaction may be easily induced but the host neurons may be more able to accept donor cells in the presence of neural differentiating factor. These results will help optimize transplantation conditions when we consider clinical application.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。