TRPC6-Mediated Zn2+ Influx Negatively Regulates Contractile Differentiation of Vascular Smooth Muscle Cells

TRPC6 介导的 Zn2+ 内流对血管平滑肌细胞收缩分化有负向调节作用

阅读:4
作者:Chenlin Su, Xinya Mi, Tomoya Ito, Yuri Kato, Akiyuki Nishimura, Ryu Nagata, Yasuo Mori, Motohiro Nishida

Abstract

Vascular smooth muscle cells (VSMCs) can dynamically change their phenotype between contractile and synthetic forms in response to environmental stress, which is pivotal in maintaining vascular homeostasis and mediating pathological remodeling of blood vessels. We previously reported that suppression of canonical transient receptor potential 6 (TRPC6) channel-mediated cation entry sustains VSMCs contractile phenotype and promotes the blood flow recovery after hindlimb ischemia in mice. We also reported that Zn2+, a metal biomolecule mobilized by TRPC6 channel activation, exerts potential beneficial effects on cardiac contractility and remodeling. Therefore, we hypothesized that TRPC6-mediated Zn2+ influx participates in phenotype switching of VSMCs and vascular remodeling. We established rat aortic smooth muscle cells (RAoSMCs) stably expressing wild type (WT) and Zn2+ only impermeable TRPC6 (KYD) mutant. Although the resting phenotypes were similar in both RAoSMCs, pharmacological TRPC6 activation by PPZ2 prevented the transforming growth factor (TGF) β-induced reduction in the intracellular Zn2+ amount and contractile differentiation in RAoSMCs (WT), but failed to prevent them in RAoSMCs (KYD). There were no significant differences in TRPC6-dependent cation currents among all RAoSMCs pretreated with or without TGFβ and/or PPZ2, suggesting that TRPC6 channels are functionally expressed in RAoSMCs regardless of their phenotype. Treatment of mice with PPZ2 attenuated the progression of vascular remodeling caused by chronic angiotensin II infusion. These results suggest that Zn2+ influx through TRPC6 channels negatively regulates the TGFβ-induced contractile differentiation of VSMCs and the progression of vascular remodeling in rodents.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。