Autocrine and exocrine regulation of interleukin-10 production in THP-1 cells stimulated with Borrelia burgdorferi lipoproteins

伯氏疏螺旋体脂蛋白刺激 THP-1 细胞产生白细胞介素-10 的自分泌和外分泌调节

阅读:5
作者:Guillermo H Giambartolomei, Vida A Dennis, Barbara L Lasater, P K Murthy, Mario T Philipp

Abstract

We have recently demonstrated that interleukin-10 (IL-10), produced by THP-1 monocytes in response to Borrelia burgdorferi lipoproteins, dampens the production of concomitantly elicited inflammatory cytokines. Thus, IL-10 could potentially down-regulate inflammatory and microbicidal effector mechanisms of the innate immune response to a B. burgdorferi infection, facilitating the establishment of the spirochete. To understand the mechanism(s) implicated in the regulation of the synthesis and release of IL-10 during early infection, we investigated the autocrine effects of IL-6, IL-12, tumor necrosis factor alpha (TNF-alpha), and IL-10 itself, as well as the exocrine effect of IFN-gamma on the production of macrophage-derived IL-10 with lipoprotein as a stimulant. In addition, in view of the differences in the receptor and signal transduction pathways of lipopolysaccharide (LPS) and bacterial lipoproteins, we also investigated the effects described above with LPS as a stimulant. The THP-1 human monocytic cell line and purified recombinant lipidated OspA (L-OspA) were used as the model target cell and stimulant, respectively. TNF-alpha increased the production of IL-10, as elicited by lipoproteins. The production of IL-10 by THP-1 cells stimulated with L-OspA was autoregulated by a negative feedback mechanism involving the IL-10 receptor (IL-10R). Exogenous IFN-gamma significantly inhibited the production of IL-10. Both autocrine (IL-10) and exocrine (IFN-gamma) inhibition of IL-10 production resulted in an increase in the production of the proinflammatory cytokines IL-6 and IL-12. The same results were obtained when the stimulant was LPS. The results further illustrate that IL-10 may play a pivotal role in Lyme disease pathogenesis. Moreover, the regulation of its production with lipoprotein as a stimulant is indistinguishable from that observed when LPS acts as a stimulant.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。