3D-printed biomaterials with regional auxetic properties

具有局部膨胀特性的 3D 打印生物材料

阅读:4
作者:John J Warner, Allison R Gillies, Henry H Hwang, Hong Zhang, Richard L Lieber, Shaochen Chen

Abstract

Tissue engineering is replete with methods for inducing and mediating cell differentiation, which are crucial for ensuring proper regrowth of desired tissues. In this study, we developed a 3D-printed, non-positive Poisson's Ratio (NPPR) scaffold intended for future use in stretch-mediated cell differentiation applications, such as in muscle and tendon regeneration. We utilized dynamic optical projection stereolithography (DOPsL) to fabricate multi-layered, cell-laden NPPR scaffolds - these scaffolds can not only support aggregate cell growth, but can also be printed with locally-tunable force-displacement properties at length scales appropriate for tissue interaction. These NPPR multilayered mesh scaffolds can be embedded into highly elastic hydrogels in order to couple a reduced NPPR behavior to a normally Positive Poisson's Ratio (PPR) solid bulk material. This hybrid structure may potentially enable induced 'auxetic' behavior at the single-cell scale while tuning the Poisson's Ratio to a more isolated value. This would be uniquely suited for providing stretch-mediated effects for various cell-types within the tendon-to-muscle tissue transition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。