Breast cancer cell-derived exosomal miR-20a-5p promotes the proliferation and differentiation of osteoclasts by targeting SRCIN1

乳腺癌细胞来源的外泌体 miR-20a-5p 通过靶向 SRCIN1 促进破骨细胞增殖分化

阅读:6
作者:Ling Guo, Ye Zhu, Liandi Li, Shufen Zhou, Guohua Yin, Guanghao Yu, Hujun Cui

Abstract

Bone metastasis of breast cancer makes patients suffer from pain, fractures, spinal cord compression, and hypercalcemia, and is almost incurable. Although the mechanisms of bone metastasis in breast cancers have been studied intensively, novel specific target will be helpful to the development of new therapeutic strategy of breast cancer. Herein, we focused on the microRNA of tumor cell-derived exosomes to investigate the communication between the bone microenvironment and tumor cells. The expression of miR-20a-5p in the primary murine bone marrow macrophages (BMMs), MCF-10A, MCF-7, and MDA-MB-231 cell lines, as well as the cell-derived exosomes were assessed by qRT-PCR. Transwell assays were used to evaluate the effects of miR-20a-5p on tumor cell migration and invasion. The expression of exosomes marker including CD63and TSG101 was detected by Western Blot. Cell cycle distribution of BMMs was analyzed by flow cytometry. 3-UTR luciferase reporter assays were used to validate the putative binding between miR-20a-5p and SRCIN1. MiR-20a-5p was highly expressed in breast tumor tissues and the exosomes of MDA-MB-231 cells. MiR-20a-5p promoted migration and invasion in MDA-MB-231 cells, and the proliferation and differentiation of osteoclasts. MDA-MB-231 cell-derived exosomes transferred miR-20a-5p to BMMs and facilitated the osteoclastogenesis via targeting SRCIN1. The present work provides evidence that miR-20a-5p transferred from breast cancer cell-derived exosomes promotes the proliferation and differentiation of osteoclasts by targeting SRCIN1, providing scientific foundations for the development of exosome or miR-20a-5p targeted therapeutic intervention in breast cancer progression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。