Proteomic Analysis of Thermal Regulation of Small Yellow Follicles in Broiler-Type Taiwan Country Chickens

台湾肉鸡小黄卵泡体温调节的蛋白质组学分析

阅读:5
作者:Chuen-Yu Cheng, Wei-Lin Tu, Chao-Jung Chen, Hong-Lin Chan, Chih-Feng Chen, Hsin-Hsin Chen, Pin-Chi Tang, Yen-Pai Lee, Shuen-Ei Chen, San-Yuan Huang

Abstract

Heat stress hampers egg production and lowers fertility in layers. This study investigated global protein abundance in the small yellow follicles (SYFs, 6-8 mm diameter) of a broiler-type strain of Taiwan country chickens (TCCs) under acute heat stress. Twelve 30-week-old TCC hens were allocated to a control group maintained at 25°C, and to three acute heat-stressed groups subjected to 38°C for 2 h without recovery, with 2-h recovery, or with 6-h recovery. Two-dimensional difference gel electrophoresis analysis identified 119 significantly differentially expressed proteins after acute heat exposure. Gene ontology analysis revealed that most of these proteins are involved in molecular binding (34%), catalytic activity (23%), and structural molecule activity (11%), and participate in metabolic processes (20%), cellular processes (20%), and cellular component organization or biogenesis (11%). Proteins associated with stress response and survival (HSP25, HSP47, HSP70, HSC70, HSPA9), cytoskeleton remodeling, mitochondrial metabolic process of ATP production, antioxidative defense (peroxiredoxin-6), cargo lipid export and delivery (vitellogenin, apolipoprotein B and A1), and toxin/metabolite clearance and delivery (albumin) were upregulated after acute heat stress in the SYFs of TCCs. No overt cell death and atresia were observed in SYFs after acute heat stress. Collectively, these responses may represent a protective mechanism to maintain follicle cell integrity and survival, thereby ensuring a sufficient pool of SYFs for selection into the ovulation hierarchy for successful egg production.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。