Immune repertoire fingerprinting by principal component analysis reveals shared features in subject groups with common exposures

通过主成分分析进行免疫组库指纹识别,揭示了具有共同暴露的受试者群体中的共同特征

阅读:6
作者:Alexander M Sevy, Cinque Soto, Robin G Bombardi, Jens Meiler, James E Crowe Jr

Background

Advances in next-generation sequencing (NGS) of antibody repertoires have led to an explosion in B cell receptor sequence data from donors with many different disease states. These data have the potential to detect patterns of immune response across populations. However, to this point it has been difficult to interpret such patterns of immune response between disease states in the absence of functional data. There is a need for a robust method that can be used to distinguish general patterns of immune responses at the antibody repertoire level.

Conclusions

Our repertoire fingerprinting method for distinguishing immune repertoires has implications for characterizing an individual disease state. Methods to distinguish disease states based on pattern recognition in the adaptive immune response could be used to develop biomarkers with diagnostic or prognostic utility in patient care. Extending our analysis to larger cohorts of patients in the future should permit us to define more precisely those characteristics of the immune response that result from natural infection or autoimmunity.

Results

We developed a method for reducing the complexity of antibody repertoire datasets using principal component analysis (PCA) and refer to our method as "repertoire fingerprinting." We reduce the high dimensional space of an antibody repertoire to just two principal components that explain the majority of variation in those repertoires. We show that repertoires from individuals with a common experience or disease state can be clustered by their repertoire fingerprints to identify common antibody responses. Conclusions: Our repertoire fingerprinting method for distinguishing immune repertoires has implications for characterizing an individual disease state. Methods to distinguish disease states based on pattern recognition in the adaptive immune response could be used to develop biomarkers with diagnostic or prognostic utility in patient care. Extending our analysis to larger cohorts of patients in the future should permit us to define more precisely those characteristics of the immune response that result from natural infection or autoimmunity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。