Novel role of aminopeptidase-A in angiotensin-(1-7) metabolism post myocardial infarction

氨基肽酶A在心肌梗死后血管紧张素-(1-7)代谢中的新作用

阅读:5
作者:Mahmoud S Alghamri, Mariana Morris, J Gary Meszaros, Khalid M Elased, Nadja Grobe

Abstract

Aminopeptidase-A (APA) is a less well-studied enzyme of the renin-angiotensin system. We propose that it is involved in cardiac angiotensin (ANG) metabolism and its pathologies. ANG-(1-7) can ameliorate remodeling after myocardial injury. The aims of this study are to (1) develop mass spectrometric (MS) approaches for the assessment of ANG processing by APA within the myocardium; and (2) investigate the role of APA in cardiac ANG-(1-7) metabolism after myocardial infarction (MI) using sensitive MS techniques. MI was induced in C57Bl/6 male mice by ligating the left anterior descending (LAD) artery. Frozen mouse heart sections (in situ assay) or myocardial homogenates (in vitro assay) were incubated with the endogenous APA substrate, ANG II. Results showed concentration- and time-dependent cardiac formation of ANG III from ANG II, which was inhibited by the specific APA inhibitor, 4-amino-4-phosphonobutyric acid. Myocardial APA activity was significantly increased 24 h after LAD ligation (0.82 ± 0.02 vs. 0.32 ± 0.02 ρmol·min(-1)·μg(-1), MI vs. sham, P < 0.01). Both MS enzyme assays identified the presence of a new peptide, ANG-(2-7), m/z 784, which accumulated in the MI (146.45 ± 6.4 vs. 72.96 ± 7.0%, MI vs. sham, P < 0.05). Use of recombinant APA enzyme revealed that APA is responsible for ANG-(2-7) formation from ANG-(1-7). APA exhibited similar substrate affinity for ANG-(1-7) compared with ANG II {Km (ANG II) = 14.67 ± 1.6 vs. Km [ANG-(1-7)] = 6.07 ± 1.12 μmol/l, P < 0.05}. Results demonstrate a novel role of APA in ANG-(1-7) metabolism and suggest that the upregulation of APA, which occurs after MI, may deprive the heart of cardioprotective ANG-(1-7). Thus APA may serve as a potentially novel therapeutic target for management of tissue remodeling after MI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。