Dietary Fiber's Physicochemical Properties and Gut Bacterial Dysbiosis Determine Fiber Metabolism in the Gut

膳食纤维的理化性质和肠道细菌失调决定肠道中的纤维代谢

阅读:13
作者:Edward Moncada, Nuseybe Bulut, Shiyu Li, Timothy Johnson, Bruce Hamaker, Lavanya Reddivari

Abstract

A fiber-rich diet is considered beneficial for gut health. An inflamed gut with a dysbiotic bacterial community can result in altered fiber metabolism depending on the fiber's physicochemical properties. This study examined the effect of fiber's physicochemical properties on fiber fermentation in the presence of healthy and colitis-associated bacteria. Sixteen fibers with different levels of solubility, complexity, and fermentation rate were used in in vitro fermentation with healthy human gut bacteria. Resistant maltodextrins (RMD), pectin (HMP), inulin (ChIn), and wheat bran (WB) were selected for fermentation using ulcerative colitis (UC)-associated bacteria to assess bacterial dysbiosis effect. UC-associated gut microbiota showed a significant reduction in α-and β-diversity indices compared to healthy-associated microbiota. The differences in the gut microbiota composition and diversity between the donors resulted in decreased fermentation rates with UC-associated bacteria. Fiber fermentation metabolites, short-chain fatty acids (SCFA) and gas production were significantly lower in the presence of UC-associated bacteria for all four fibers tested. Overall, we conclude that dietary fiber properties and microbial dysbiosis are influential in fiber fermentation and metabolite production in the gut.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。