Botulinum toxin A increases allograft tolerance in an experimental transplantation model: a preliminary study

肉毒杆菌毒素 A 增强实验性移植模型中的同种异体移植耐受性:一项初步研究

阅读:7
作者:Yun Joo Park, Jang Won Lee, Yosep Chong, Tae Hwan Park

Abstract

Identifying novel and safe immunosuppressants is of crucial importance. Recently, there have been several studies revealing that botulinum toxin A (BoTA) significantly alleviates ischemia-reperfusion injuries. Emerging evidence shows that ischemia-reperfusion injuries contribute to innate immune activation, promoting rejection, and inhibiting tolerance. Therefore, we hypothesized that a pretreatment with BoTA might decrease allograft rejection in a rat transplantation model. Twenty-four Lewis (LEW) rats were randomly assigned into two groups consisting of 12 rats each, depending on whether skin allograft was performed after pretreatment with BoTA (BoTA group) or with normal saline (control group). The experimental group was pretreated with a subcutaneous injection of BoTA (10 IU), while the control group was pretreated with normal saline 5 days prior to surgery. The donor Brown-Norway (BN) rat dorsal skin was subsequently grafted to the recipient LEW rats. The recipient wounds, measuring 2 cm × 2 cm, were made via dorsal skin excision through the panniculus carnosus. The donor skins of the same dimensions were obtained and transplanted on to the wounds and sutured with 4-0 nylon sutures. Mean graft survival time was measured in both groups. Quantitative reverse-transcriptase PCR and Western blotting were performed to evaluate the gene/protein expression of CD4 and VEGF. The mean graft survival time in the BoTA group was significantly longer than that of the control group (P=0.004). The relative mRNA and protein expression of CD4 was significantly lower in the BoTA group (P<0.001), while the relative mRNA and protein expression of VEGF was significantly higher in the BoTA group (P<0.001). In conclusion, our results show that BoTA prolongs the survival of skin allografts in a rat transplantation model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。