Botulinum toxin A increases allograft tolerance in an experimental transplantation model: a preliminary study

肉毒杆菌毒素 A 增强实验性移植模型中的同种异体移植耐受性:一项初步研究

阅读:2
作者:Yun Joo Park, Jang Won Lee, Yosep Chong, Tae Hwan Park

Abstract

Identifying novel and safe immunosuppressants is of crucial importance. Recently, there have been several studies revealing that botulinum toxin A (BoTA) significantly alleviates ischemia-reperfusion injuries. Emerging evidence shows that ischemia-reperfusion injuries contribute to innate immune activation, promoting rejection, and inhibiting tolerance. Therefore, we hypothesized that a pretreatment with BoTA might decrease allograft rejection in a rat transplantation model. Twenty-four Lewis (LEW) rats were randomly assigned into two groups consisting of 12 rats each, depending on whether skin allograft was performed after pretreatment with BoTA (BoTA group) or with normal saline (control group). The experimental group was pretreated with a subcutaneous injection of BoTA (10 IU), while the control group was pretreated with normal saline 5 days prior to surgery. The donor Brown-Norway (BN) rat dorsal skin was subsequently grafted to the recipient LEW rats. The recipient wounds, measuring 2 cm × 2 cm, were made via dorsal skin excision through the panniculus carnosus. The donor skins of the same dimensions were obtained and transplanted on to the wounds and sutured with 4-0 nylon sutures. Mean graft survival time was measured in both groups. Quantitative reverse-transcriptase PCR and Western blotting were performed to evaluate the gene/protein expression of CD4 and VEGF. The mean graft survival time in the BoTA group was significantly longer than that of the control group (P=0.004). The relative mRNA and protein expression of CD4 was significantly lower in the BoTA group (P<0.001), while the relative mRNA and protein expression of VEGF was significantly higher in the BoTA group (P<0.001). In conclusion, our results show that BoTA prolongs the survival of skin allografts in a rat transplantation model.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。