Ion conduction and selectivity in acid-sensing ion channel 1

酸敏感离子通道 1 中的离子传导和选择性

阅读:6
作者:Lei Yang, Lawrence G Palmer

Abstract

The ability of acid-sensing ion channels (ASICs) to discriminate among cations was assessed based on changes in conductance and reversal potential with ion substitution. Human ASIC1a was expressed in Xenopus laevis oocytes, and acid-induced currents were measured using two-electrode voltage clamp. Replacement of extracellular Na(+) with Li(+), K(+), Rb(+), or Cs(+) altered inward conductance and shifted the reversal potentials consistent with a selectivity sequence of Li ∼ Na > K > Rb > Cs. Permeability decreased more rapidly than conductance as a function of atomic size, with P(K)/P(Na) = 0.1 and G(K)/G(Na) = 0.7 and P(Rb)/P(Na) = 0.03 and G(Rb)/G(Na) = 0.3. Stimulation of Cl(-) currents when Na(+) was replaced with Ca(2+), Sr(2+), or Ba(2+) indicated a finite permeability to divalent cations. Inward conductance increased with extracellular Na(+) in a hyperbolic manner, consistent with an apparent affinity (K(m)) for Na(+) conduction of 25 mM. Nitrogen-containing cations, including NH4(+), NH3OH(+), and guanidinium, were also permeant. In addition to passing through the channels, guanidinium blocked Na(+) currents, implying competition for a site within the pore. The role of negative charges in an external vestibule of the pore was evaluated using the point mutation D434N. The mutant channel had a decreased single-channel conductance, measured in excised outside-out patches, and a macroscopic slope conductance that increased with hyperpolarization. It had a weakened interaction with Na(+) (K(m) = 72 mM) and a selectivity that was shifted toward larger atomic sizes. We conclude that the selectivity of ASIC1 is based at least in part on interactions with binding sites both within and internal to the outer vestibule.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。