DHA reduces the atrophy-associated Fn14 protein in differentiated myotubes during coculture with macrophages

DHA 可降低分化肌管与巨噬细胞共培养过程中萎缩相关的 Fn14 蛋白

阅读:7
作者:Brian S Finlin, Vijayalakshmi Varma, Greg T Nolen, John Dubé, Catherine P Starnes, Neda Rasouli, Philip A Kern, Charlotte A Peterson

Abstract

Macrophages are an important component of muscle where they are involved in complex processes such as repair, regeneration and hypertrophy. We recently reported that macrophage numbers increase in the muscle of obese patients, suggesting that muscle-resident macrophages could be involved in the development of muscle insulin resistance that is associated with obesity. Coculture of activated macrophages with human muscle cells impairs insulin signaling and induces atrophy signaling pathways in the human muscle cells; this is exacerbated by the addition of palmitic acid. In this study, we tested the hypothesis that docosahexaenoic acid (DHA), a polyunsaturated fatty acid that has anti-inflammatory properties, would have the opposite effect of palmitic acid on muscle-macrophage cocultures. Surprisingly, DHA did not stimulate insulin signaling in human muscle myotubes that were cocultured with fibroblasts or macrophages. However, DHA inhibited Fn14, the TNF-like weak inducer of apoptosis receptor that increases the expression of the muscle-specific ubiquitin ligase MuRF-1 (muscle ring-finger protein-1). DHA treatment also increased the apparent molecular mass of MuRF-1 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels, suggesting that DHA causes MuRF-1 to be posttranslationally modified. In conclusion, these results suggest that DHA may have a beneficial effect on muscle mass in humans by inhibiting the induction of Fn14 by infiltrating macrophages.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。