Serine 307 on insulin receptor substrate 1 is required for SOCS3 and TNF-α signaling in the rMC-1 cell line

胰岛素受体底物 1 上的丝氨酸 307 是 rMC-1 细胞系中 SOCS3 和 TNF-α 信号传导所必需的

阅读:5
作者:Youde Jiang, Subrata K Biswas, Jena J Steinle

Conclusions

Increases in TNF-α and SOCS3 are triggered by high glucose and through reciprocal stimulation of expression of these two factors, which in turn could be major drivers of insulin resistance and related cell death. The demonstration that a single phosphorylation site is key for these pathways suggests that drugs targeted to this site might be effective in protecting against diabetic damage to the retina.

Methods

rMC-1 cells were grown in normal (5 mM) or high (25 mM) glucose medium and transfected with either normal IRS-1(Ser307)plasmid or a mutated IRS-1(Ser307Ala) plasmid. Cells were also treated with recombinant TNF-α or SOCS3 to induce increased levels of these proteins.

Purpose

To establish the key insulin receptor substrate 1 (IRS-1) structural elements required in this insulin regulatory pathway, we investigated the effects of substituting alanine for serine 307 in IRS-1 on the ability of tumor necrosis factor-α (TNF-α) and a related mediator, suppressor of cytokine signaling 3 (SOCS3), to phosphorylate IRS-1 and regulate insulin signaling in the rat retinal Müller cell (rMC-1) cell line.

Results

In cells with IRS-1(Ser307Ala), TNF-α and SOCS3 failed to phosphorylate IRS-1. Likewise, resulting downstream effects, including changes in phosphorylation of insulin receptor(Tyr960), antiapoptotic Akt phosphorylation, and proapoptotic cleavage of caspase 3 were also blocked. We also report for the first time that SOCS3 and TNF-α are reciprocally stimulatory leading to a mutual enhancement of levels of both factors, thus forming a potential positive feedback loop that contributes to insulin receptor resistance. Conclusions: Increases in TNF-α and SOCS3 are triggered by high glucose and through reciprocal stimulation of expression of these two factors, which in turn could be major drivers of insulin resistance and related cell death. The demonstration that a single phosphorylation site is key for these pathways suggests that drugs targeted to this site might be effective in protecting against diabetic damage to the retina.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。