ω-Grammotoxin-SIA inhibits voltage-gated Na+ channel currents

ω-革兰氏毒素-SIA 抑制电压门控 Na+ 通道电流

阅读:6
作者:Rita de Cássia Collaço, Filip Van Petegem, Frank Bosmans

Abstract

ω-Grammotoxin-SIA (GrTX-SIA) was originally isolated from the venom of the Chilean rose tarantula and demonstrated to function as a gating modifier of voltage-gated Ca2+ (CaV) channels. Later experiments revealed that GrTX-SIA could also inhibit voltage-gated K+ (KV) channel currents via a similar mechanism of action that involved binding to a conserved S3-S4 region in the voltage-sensing domains (VSDs). Since voltage-gated Na+ (NaV) channels contain homologous structural motifs, we hypothesized that GrTX-SIA could inhibit members of this ion channel family as well. Here, we show that GrTX-SIA can indeed impede the gating process of multiple NaV channel subtypes with NaV1.6 being the most susceptible target. Moreover, molecular docking of GrTX-SIA onto NaV1.6, supported by a p.E1607K mutation, revealed the voltage sensor in domain IV (VSDIV) as being a primary site of action. The biphasic manner in which current inhibition appeared to occur suggested a second, possibly lower-sensitivity binding locus, which was identified as VSDII by using KV2.1/NaV1.6 chimeric voltage-sensor constructs. Subsequently, the NaV1.6p.E782K/p.E838K (VSDII), NaV1.6p.E1607K (VSDIV), and particularly the combined VSDII/VSDIV mutant lost virtually all susceptibility to GrTX-SIA. Together with existing literature, our data suggest that GrTX-SIA recognizes modules in NaV channel VSDs that are conserved among ion channel families, thereby allowing it to act as a comprehensive ion channel gating modifier peptide.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。