Molecular glues of the regulatory ChREBP/14-3-3 complex protect beta cells from glucolipotoxicity

调节性 ChREBP/14-3-3 复合物的分子胶保护 β 细胞免受糖脂毒性

阅读:4
作者:Liora S Katz, Emira J Visser, Kathrin F Plitzko, Marloes Pennings, Peter J Cossar, Isabelle L Tse, Markus Kaiser, Luc Brunsveld, Donald K Scott, Christian Ottmann

Abstract

The Carbohydrate Response Element Binding Protein (ChREBP) is a glucose-responsive transcription factor (TF) that is characterized by two major splice isoforms (α and β). In acute hyperglycemia, both ChREBP isoforms regulate adaptive β-expansion; however, during chronic hyperglycemia and glucolipotoxicity, ChREBPβ expression surges, leading to β-cell dedifferentiation and death. 14-3-3 binding to ChREBPα results in its cytoplasmic retention and concomitant suppression of transcriptional activity, suggesting that small molecule-mediated stabilization of this protein-protein interaction (PPI) via molecular glues may represent an attractive entry for the treatment of metabolic disease. Here, we show that structure-based optimizations of a molecular glue tool compound led not only to more potent ChREBPα/14-3-3 PPI stabilizers but also for the first time cellular active compounds. In primary human β-cells, the most active compound stabilized the ChREBPα/14-3-3 interaction and thus induced cytoplasmic retention of ChREBPα, resulting in highly efficient β-cell protection from glucolipotoxicity while maintaining β-cell identity. This study may thus not only provide the basis for the development of a unique class of compounds for the treatment of Type 2 Diabetes but also showcases an alternative 'molecular glue' approach for achieving small molecule control of notoriously difficult targetable TFs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。