A g-C3N4/rGO/Cs3Bi2Br9 mediated Z-scheme heterojunction for enhanced photocatalytic CO2 reduction

g-C3N4/rGO/Cs3Bi2Br9 介导的 Z 型异质结可增强光催化 CO2 还原

阅读:8
作者:Yasmine Baghdadi, Matyas Daboczi, Filipp Temerov, Mengya Yang, Junyi Cui, Salvador Eslava

Abstract

Photocatalytic CO2 reduction plays a crucial role in advancing solar fuels, and enhancing the efficiency of the chosen photocatalysts is essential for sustainable energy production. This study demonstrates advancements in the performance of g-C3N4 as a photocatalyst achieved through surface modifications such as exfoliation to increase surface area and surface oxidation for improved charge separation. We also introduce reduced graphene oxide (rGO) in various ratios to both bulk and exfoliated g-C3N4, which effectively mitigates charge recombination and establishes an optimal ratio for enhanced efficiency. g-C3N4/rGO serves to fabricate a hybrid organic/inorganic heterojunction with Cs3Bi2Br9, resulting in a g-C3N4/rGO/Cs3Bi2Br9 composite. This leads to a remarkable increase in photocatalytic conversion of CO2 and H2O to CO, H2 and CH4 at rates of 54.3 (±2.0) μmole- g-1 h-1, surpassing that of pure Cs3Bi2Br9 (11.2 ± 0.4 μmole- g-1 h-1) and bulk g-C3N4 (5.5 ± 0.5 μmole- g-1 h-1). The experimentally determined energy diagram indicates that rGO acts as a solid redox mediator between g-C3N4 and Cs3Bi2Br9 in a Z-scheme heterojunction configuration, ensuring that the semiconductor (Cs3Bi2Br9) with the shallowest conduction band drives the reduction and the one with the deepest valence band (g-C3N4) drives the oxidation. The successful formation of this high-performance heterojunction underscores the potential of the developed composite as a photocatalyst for CO2 reduction, offering promising prospects for advancing the field of solar fuels and achieving sustainable energy goals.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。