Loss of Notch dimerization perturbs intestinal homeostasis by a mechanism involving HDAC activity

Notch 二聚化的丧失通过涉及 HDAC 活性的机制扰乱肠道稳态

阅读:6
作者:Quanhui Dai, Kristina Preusse, Danni Yu, Rhett A Kovall, Konrad Thorner, Xinhua Lin, Raphael Kopan

Abstract

A tri-protein complex containing NICD, RBPj and MAML1 binds DNA as monomer or as cooperative dimers to regulate transcription. Mice expressing Notch dimerization-deficient alleles (NDD) of Notch1 and Notch2 are sensitized to environmental insults but otherwise develop and age normally. Transcriptomic analysis of colonic spheroids uncovered no evidence of dimer-dependent target gene miss-regulation, confirmed impaired stem cell maintenance in-vitro, and discovered an elevated signature of epithelial innate immune response to symbionts, a likely underlying cause for heightened sensitivity in NDD mice. TurboID followed by quantitative nano-spray MS/MS mass-spectrometry analyses in a human colon carcinoma cell line expressing either NOTCH2DD or NOTCH2 revealed an unbalanced interactome, with reduced interaction of NOTCH2DD with the transcription machinery but relatively preserved interaction with the HDAC2 interactome suggesting modulation via cooperativity. To ask if HDAC2 activity contributes to Notch loss-of-function phenotypes, we used the HDAC2 inhibitor Valproic acid (VPA) and discovered it could prevent the intestinal consequences of NDD and gamma secretase inhibitors (DBZ or DAPT) treatment in mice and spheroids, suggesting synergy between HDAC activity and pro-differentiation program in intestinal stem cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。