TRAF3 Modulation: Novel Mechanism for the Anti-inflammatory Effects of the Vitamin D Receptor Agonist Paricalcitol in Renal Disease

TRAF3 调节:维生素 D 受体激动剂帕立骨化醇在肾脏疾病中抗炎作用的新机制

阅读:7
作者:Sandra Rayego-Mateos, Jose Luis Morgado-Pascual, José Manuel Valdivielso, Ana Belén Sanz, Enrique Bosch-Panadero, Raúl R Rodrigues-Díez, Jesús Egido, Alberto Ortiz, Emilio González-Parra, Marta Ruiz-Ortega

Background

CKD leads to vitamin D deficiency. Treatment with vitamin D receptor agonists (VDRAs) may have nephroprotective and anti-inflammatory actions, but their mechanisms of action are poorly understood.

Conclusions

These data suggest the anti-inflammatory actions of paricalcitol depend on TRAF3 modulation and subsequent inhibition of the noncanonical NF-κB2 pathway, identifying a novel mechanism for VDRA's effects. Circulating TRAF3 levels could be a biomarker of renal damage associated with the inflammatory state.

Methods

Modulation of the noncanonical NF-κB2 pathway and its component TNF receptor-associated factor 3 (TRAF3) by the VDRA paricalcitol was studied in PBMCs from patients with ESKD, cytokine-stimulated cells, and preclinical kidney injury models.

Results

In PBMCs isolated from patients with ESKD, TRAF3 protein levels were lower than in healthy controls. This finding was associated with evidence of noncanonical NF-κB2 activation and a proinflammatory state. However, PBMCs from patients with ESKD treated with paricalcitol did not exhibit these features. Experiments in cultured cells confirmed the link between TRAF3 and NF-κB2/inflammation. Decreased TRAF3 ubiquitination in K48-linked chains and cIAP1-TRAF3 interaction mediated the mechanisms of paricalcitol action.TRAF3 overexpression by CRISPR/Cas9 technology mimicked VDRA's effects. In a preclinical model of kidney injury, paricalcitol inhibited renal NF-κB2 activation and decreased renal inflammation. In VDR knockout mice with renal injury, paricalcitol prevented TRAF3 downregulation and NF-κB2-dependent gene upregulation, suggesting a VDR-independent anti-inflammatory effect of paricalcitol. Conclusions: These data suggest the anti-inflammatory actions of paricalcitol depend on TRAF3 modulation and subsequent inhibition of the noncanonical NF-κB2 pathway, identifying a novel mechanism for VDRA's effects. Circulating TRAF3 levels could be a biomarker of renal damage associated with the inflammatory state.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。