Surface characteristics on commercial dental implants differentially activate macrophages in vitro and in vivo

商业牙种植体的表面特征在体外和体内对巨噬细胞有不同的激活作用

阅读:7
作者:Jefferson O Abaricia, Arth H Shah, Marissa N Ruzga, Rene Olivares-Navarrete

Conclusions

These findings show that hydrophilicity alone is insufficient to predict the anti-inflammatory effect on macrophage polarization and that other properties-surface composition or topography-determine immune modulation. This in vivo model may be a useful screening method to compare the immunomodulatory response to clinical implants of disparate geometry or size.

Material and methods

Eleven commercially available Ti (A-F) or Ti alloy (G-K) dental implants were examined in this study. Surface topography, chemistry, and hydrophilicity were characterized for each implant. To compare the immune response in vitro, human monocyte-derived macrophages were seeded on implants and secreted pro- and anti-inflammatory proteins measured. To evaluate the inflammatory response in vivo, mice were subcutaneously instrumented with clinical implants, and implant adherent macrophage populations were characterized by flow cytometry.

Methods

Eleven commercially available Ti (A-F) or Ti alloy (G-K) dental implants were examined in this study. Surface topography, chemistry, and hydrophilicity were characterized for each implant. To compare the immune response in vitro, human monocyte-derived macrophages were seeded on implants and secreted pro- and anti-inflammatory proteins measured. To evaluate the inflammatory response in vivo, mice were subcutaneously instrumented with clinical implants, and implant adherent macrophage populations were characterized by flow cytometry.

Results

Macrophages on hydrophobic Implant C produced the highest level of pro-inflammatory proteins in vitro. In contrast, hydrophilic Implant E produced the second-highest pro-inflammatory response. Implants F and K, both hydrophilics, produced the highest anti-inflammatory protein secretions. Likewise, pro-inflammatory CD80hi macrophages predominated in vivo on implants C and E, and M2 CD206 + macrophages predominated on implants F and K. Conclusions: These findings show that hydrophilicity alone is insufficient to predict the anti-inflammatory effect on macrophage polarization and that other properties-surface composition or topography-determine immune modulation. This in vivo model may be a useful screening method to compare the immunomodulatory response to clinical implants of disparate geometry or size.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。