Phosphodiesterases Mediate the Augmentation of Myogenic Constriction by Inhibitory G Protein Signaling and is Negatively Modulated by the Dual Action of RGS2 and 5

磷酸二酯酶通过抑制 G 蛋白信号传导介导肌源性收缩增强,并受到 RGS2 和 5 的双重作用的负向调节

阅读:5
作者:Bo Sun, Nia Smith, Alethia J Dixon, Patrick Osei-Owusu

Abstract

G protein regulation by regulators of G protein signaling (RGS) proteins play a key role in vascular tone maintenance. The loss of Gi/o and Gq/11 regulation by RGS2 and RGS5 in non-pregnant mice is implicated in augmented vascular tone and decreased uterine blood flow (UBF). RGS2 and 5 are closely related and co-expressed in uterine arteries (UA). However, whether and how RGS2 and 5 coordinate their regulatory activities to finetune G protein signaling and regulate vascular tone are unclear. Here, we determined how the integrated activity of RGS2 and 5 modulates vascular tone to promote UBF. Using ultrasonography and pressure myography, we examined uterine hemodynamics and myogenic tone (MT) of UA of wild type (WT), Rgs2-/-, Rgs5-/-, and Rgs2/5 dbKO mice. We found that MT was reduced in Rgs5-/- relative to WT or Rgs2-/- UA. Activating Gi/o with dopamine increased, whereas exogenous cAMP decreased MT in Rgs5-/- UA to levels in WT UA. Dual deletion of Rgs2 and 5 abolished the reduced MT due to the absence of Rgs5 and enhanced dopamine-induced Gi/o effects in Rgs2/5 dbKO UA. Conversely, and as in WT UA, Gi/o inhibition with pertussis toxin or exogenous cAMP decreased MT in Rgs2/5 dbKO to levels in Rgs5-/- UA. Inhibition of phosphodiesterases (PDE) concentration-dependently decreased and normalized MT in all genotypes, and blocked dopamine-induced MT augmentation in Rgs2-/-, Rgs5-/-, and Rgs2/5 dbKO UA. We conclude that Gi/o augments UA MT in the absence of RGS2 by a novel mechanism involving PDE-mediated inhibition of cAMP-dependent vasodilatation..

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。