Elucidation of the GSK3α Structure Informs the Design of Novel, Paralog-Selective Inhibitors

GSK3α 结构的阐明为设计新型旁系同源物选择性抑制剂提供参考

阅读:6
作者:Brenda Amaral, Andrew Capacci, Trip Anderson, Ceren Tezer, Bekim Bajrami, Mukesh Lulla, Brian Lucas, Jayanth V Chodaparambil, Douglas Marcotte, P Rajesh Kumar, Paramasivam Murugan, Kerri Spilker, Mike Cullivan, Ti Wang, Anton C Peterson, Istvan Enyedy, Bin Ma, TeYu Chen, Zain Yousaf, Michael Calhoun

Abstract

Glycogen synthase kinase 3 (GSK3) remains a therapeutic target of interest for diverse clinical indications. However, one hurdle in the development of small molecule GSK3 inhibitors has been safety concerns related to pan-inhibition of both GSK3 paralogs, leading to activation of the Wnt/β-catenin pathway and potential for aberrant cell proliferation. Development of GSK3α or GSK3β paralog-selective inhibitors that could offer an improved safety profile has been reported but further advancement has been hampered by the lack of structural information for GSK3α. Here we report for the first time the crystal structure for GSK3α, both in apo form and bound to a paralog-selective inhibitor. Taking advantage of this new structural information, we describe the design and in vitro testing of novel compounds with up to ∼37-fold selectivity for GSK3α over GSK3β with favorable drug-like properties. Furthermore, using chemoproteomics, we confirm that acute inhibition of GSK3α can lower tau phosphorylation at disease-relevant sites in vivo, with a high degree of selectivity over GSK3β and other kinases. Altogether, our studies advance prior efforts to develop GSK3 inhibitors by describing GSK3α structure and novel GSK3α inhibitors with improved selectivity, potency, and activity in disease-relevant systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。