Potentiated cholinergic and corticofugal inputs support reorganized sensory processing in the basolateral amygdala during auditory threat acquisition and retrieval

在听觉威胁获取和检索过程中,增强的胆碱能和皮质分离输入支持基底外侧杏仁核中重组的感觉处理

阅读:10
作者:Meenakshi M Asokan, Yurika Watanabe, Eyal Y Kimchi, Daniel B Polley

Abstract

Reappraising neutral stimuli as environmental threats reflects rapid and discriminative changes in sensory processing within the basolateral amygdala (BLA). To understand how BLA inputs are also reorganized during discriminative threat learning, we performed multi-regional measurements of acetylcholine (ACh) release, single unit spiking, and functional coupling in the mouse BLA and higher-order auditory cortex (HO-AC). During threat memory recall, sounds paired with shock (CS+) elicited relatively higher firing rates in BLA units and optogenetically targeted corticoamygdalar (CAmy) units, though not in neighboring HO-AC units. Functional coupling was potentiated for descending CAmy projections prior to and during CS+ threat memory recall but ascending amygdalocortical coupling was unchanged. During threat acquisition, sound-evoked ACh release was selectively enhanced for the CS+ in BLA but not HO-AC. These findings suggest that phasic cholinergic inputs facilitate discriminative plasticity in the BLA during threat acquisition that is subsequently reinforced through potentiated auditory corticofugal inputs during memory recall.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。