KCNE1 tunes the sensitivity of KV7.1 to polyunsaturated fatty acids by moving turret residues close to the binding site

KCNE1 通过将转塔残基移至结合位点附近来调节 KV7.1 对多不饱和脂肪酸的敏感性

阅读:8
作者:Johan E Larsson, H Peter Larsson, Sara I Liin

Abstract

The voltage-gated potassium channel KV7.1 and the auxiliary subunit KCNE1 together form the cardiac IKs channel, which is a proposed target for future anti-arrhythmic drugs. We previously showed that polyunsaturated fatty acids (PUFAs) activate KV7.1 via an electrostatic mechanism. The activating effect was abolished when KV7.1 was co-expressed with KCNE1, as KCNE1 renders PUFAs ineffective by promoting PUFA protonation. PUFA protonation reduces the potential of PUFAs as anti-arrhythmic compounds. It is unknown how KCNE1 promotes PUFA protonation. Here, we found that neutralization of negatively charged residues in the S5-P-helix loop of KV7.1 restored PUFA effects on KV7.1 co-expressed with KCNE1 in Xenopus oocytes. We propose that KCNE1 moves the S5-P-helix loop of KV7.1 towards the PUFA-binding site, which indirectly causes PUFA protonation, thereby reducing the effect of PUFAs on KV7.1. This mechanistic understanding of how KCNE1 alters KV7.1 pharmacology is essential for development of drugs targeting the IKs channel.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。