Diverse integrin adhesion stoichiometries caused by varied actomyosin activity

肌动球蛋白活性不同导致整合素粘附化学计量不同

阅读:5
作者:Natalia A Bulgakova, Jutta Wellmann, Nicholas H Brown

Abstract

Cells in an organism are subjected to numerous sources of external and internal forces, and are able to sense and respond to these forces. Integrin-mediated adhesion links the extracellular matrix outside cells to the cytoskeleton inside, and participates in sensing, transmitting and responding to forces. While integrin adhesion rapidly adapts to changes in forces in isolated migrating cells, it is not known whether similar or more complex responses occur within intact, developing tissues. Here, we studied changes in integrin adhesion composition upon different contractility conditions in Drosophila embryonic muscles. We discovered that all integrin adhesion components tested were still present at muscle attachment sites (MASs) when either cytoplasmic or muscle myosin II was genetically removed, suggesting a primary role of a developmental programme in the initial assembly of integrin adhesions. Contractility does, however, increase the levels of integrin adhesion components, suggesting a mechanism to balance the strength of muscle attachment to the force of muscle contraction. Perturbing contractility in distinct ways, by genetic removal of either cytoplasmic or muscle myosin II or eliminating muscle innervation, each caused unique alterations to the stoichiometry at MASs. This suggests that different integrin-associated proteins are added to counteract different kinds of force increase.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。