Highly Sensitive RNA-Based Electrochemical Aptasensor for the Determination of C-Reactive Protein Using Carbon Nanofiber-Chitosan Modified Screen-Printed Electrode

利用碳纳米纤维-壳聚糖修饰的丝网印刷电极,构建高灵敏度 RNA 电化学适体传感器,用于测定 C 反应蛋白

阅读:4
作者:Mahmoud Amouzadeh Tabrizi, Pablo Acedo

Abstract

C-reactive protein (CRP) is one of the biomarkers related to coronavirus disease 2019 (COVID-19). Therefore, it is crucial to develop a highly sensitive, selective, and cost-effective biosensor for the determination of CRP. In this study, we designed an electrochemical aptasensor. For this purpose, the surface of a carbon screen-printed electrode was first modified with a carbon nanofiber-chitosan (CNFs-CHIT) nanocomposite. After that, the amino-terminal RNA aptamer probes were linked to the amino groups of CHIT via glutaraldehyde as the cross-linker. Finally, methylene blue (MB) as a redox probe was self-assembled on the surface of the aptasensor. The obtained results indicated that the CNFs-CHIT nanocomposite increased the surface coverage of the aptamer up to 5.9 times. The square-wave voltammetry was used for the measurement of CRP concentration in the linear range of 1.0-150.0 pM. The obtained results indicated that the signal had a logarithmic relationship with the concentration of CRP. The limit of detection (LOD) was obtained to be 0.37 pM. The dissociation constant (Kd) that demonstrates the affinity of the aptamer probe to its target was found to be 0.93 pM. The analytical performances of the proposed RNA aptasensor were better than the previously reported aptasensors for CRP. The proposed aptasensor was also applied for the determination of CRP in the human plasma samples. The obtained results indicated that there were no statistically significant differences between the responses of the proposed RNA aptasensor and an enzyme-linked immunosorbent assay kit (ELISA). The analytical performances of the proposed RNA aptasensor described in this paper are better than previously reported aptasensors for CRP determination.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。