Exploring the organic nature, morphological plasticity and ecological significance of Aster like nanoparticles

探索紫菀类纳米粒子的有机性质、形态可塑性和生态意义

阅读:3
作者:Maxime Fuster, Hermine Billard, Jérémie Mathurin, Ariane Deniset-Besseau, David Albertini, Télesphore Sime-Ngando, Jonathan Colombet

Abstract

The smallest entities in aquatic ecosystems, i.e., femtoplankton, are certainly the largest reservoir of uncharacterized biodiversity. Among them, the discovery of mysterious Aster like nanoparticles has raised many questions about their nature, origin and ecology. Here, we highlight the original nature of this new model, organic and composed of enriched-calcium carbohydrates, with no detection of nucleic acids or proteins. The biosynthesis of these entities seems to be associated with a host in their 11 arms' form prior to their release into the environment. An intriguing aspect of their mode of development is their ability, once free, to change form and maintain their abundance autonomously without metabolism being detected, resulting in an unexpected polymorphism. Their remarkable capacity for massive in situ development and their links with prokaryotes and other microbes suggest a major role in the functioning of aquatic ecosystems. There's no doubt that these new entities are a source of new knowledge not only in the sciences of organic nanoparticles, but also in their ecological importance for aquatic ecosystems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。