Inhibitory Effects of Cenobamate on Multiple Human Cardiac Ion Channels and Possible Arrhythmogenic Consequences

Cenobamate 对多种人类心脏离子通道的抑制作用及其可能导致的心律失常后果

阅读:9
作者:Andreea Larisa Mateias, Florian Armasescu, Bogdan Amuzescu, Alexandru Dan Corlan, Beatrice Mihaela Radu

Abstract

Cenobamate is a novel third-generation antiepileptic drug used for the treatment of focal onset seizures and particularly for multi-drug-resistant epilepsy; it acts on multiple targets: GABAA receptors (EC50 42-194 µM) and persistent neuronal Na+ currents (IC50 59 µM). Side effects include QTc interval shortening with >20 ms, but not <300 ms. Our in vitro cardiac safety pharmacology study was performed via whole-cell patch-clamp on HEK293T cells with persistent/inducible expression of human cardiac ion channel isoforms hNav1.5 (INa), hCav1.2 (α1c + β2 + α2δ1) (ICaL), hKv7.1 + minK (IKs), and hKv11.1 (hERG) (IKr). We found IC50 of 87.6 µM (peak INa), 46.5 µM (late INa), and 509.75 µM (ICaL). In experiments on Ncyte® ventricular cardiomyocytes, APD90 was reduced with 28.6 ± 13.5% (mean ± SD) by cenobamate 200 µM. Cenobamate's marked inhibition of INa raises the theoretical possibility of cardiac arrhythmia induction at therapeutic concentrations in the context of preexisting myocardial pathology, in the presence of action potential conduction and repolarization heterogeneity. This hypothetical mechanism is consistent with the known effects of class Ib antiarrhythmics. In simulations with a linear strand of 50 cardiomyocytes with variable inter-myocyte conductance based on a modified O'Hara-Rudy model, we found a negligible cenobamate-induced conduction delay in normal tissue, but a marked delay and also a block when gap junction conduction was already depressed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。