Therapeutic Efficacy and Biodistribution of Paclitaxel-Bound Amphiphilic Cyclodextrin Nanoparticles: Analyses in 3D Tumor Culture and Tumor-Bearing Animals In Vivo

紫杉醇结合两亲性环糊精纳米粒子的治疗效果和生物分布:在 3D 肿瘤培养和荷瘤动物体内的分析

阅读:7
作者:Gamze Varan, Cem Varan, Süleyman Can Öztürk, Juan M Benito, Güneş Esendağlı, Erem Bilensoy

Abstract

The uniqueness of paclitaxel's antimitotic action mechanism has fueled research toward its application in more effective and safer cancer treatments. However, the low water solubility, recrystallization, and side effects hinder the clinical success of classic paclitaxel chemotherapy. The aim of this study was to evaluate the in vivo efficacy and biodistribution of paclitaxel encapsulated in injectable amphiphilic cyclodextrin nanoparticles of different surface charges. It was found that paclitaxel-loaded amphiphilic cyclodextrin nanoparticles showed an antitumoral effect earlier than the drug solution. Moreover, the blank nanoparticles reduced the tumor growth with a similar trend to the paclitaxel solution. At 24 h, the nanoparticles had not accumulated in the heart and lungs according to the biodistribution assessed by in vivo imaging. Therefore, our results indicated that the amphiphilic cyclodextrin nanoparticles are potentially devoid of cardiac toxicity, which limits the clinical use and commercialization of certain polymeric nanoparticles. In conclusion, the amphiphilic cyclodextrin nanoparticles with different surface charge increased the efficiency of paclitaxel in vitro and in vivo. Cyclodextrin nanoparticles could be a good candidate vehicle for intravenous paclitaxel delivery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。