MoWhi2 regulates appressorium formation and pathogenicity via the MoTor signalling pathway in Magnaporthe oryzae

MoWhi2 通过 MoTor 信号通路调控稻瘟病菌附着胞的形成和致病性

阅读:4
作者:Huanbin Shi, Shuai Meng, Jiehua Qiu, Congcong Wang, Yazhou Shu, Chaoxi Luo, Yanjun Kou

Abstract

Magnaporthe oryzae causes rice blast disease, which seriously threatens the safety of food production. Understanding the mechanism of appressorium formation, which is one of the key steps for successful infection by M. oryzae, is helpful to formulate effective control strategies of rice blast. In this study, we identified MoWhi2, the homolog of Saccharomyces cerevisiae Whi2 (Whisky2), as an important regulator that controls appressorium formation in M. oryzae. When MoWHI2 was disrupted, multiple appressoria were formed by one conidium and pathogenicity was significantly reduced. A putative phosphatase, MoPsr1, was identified to interact with MoWhi2 using a yeast two-hybridization screening assay. The knockout mutant ΔMopsr1 displayed similar phenotypes to the ΔMowhi2 strain. Both the ΔMowhi2 and ΔMopsr1 mutants could form appressoria on a hydrophilic surface with cAMP levels increasing in comparison with the wild type (WT). The conidia of ΔMowhi2 and ΔMopsr1 formed a single appressorium per conidium, similar to WT, when the target of rapamycin (TOR) inhibitor rapamycin was present. In addition, compared with WT, the expression levels of MoTOR and the MoTor signalling activation marker gene MoRS3 were increased, suggesting that inappropriate activation of the MoTor signalling pathway is one of the important reasons for the defects in appressorium formation in the ΔMowhi2 and ΔMopsr1 strains. Our results provide insights into MoWhi2 and MoPsr1-mediated appressorium development and pathogenicity by regulating cAMP levels and the activation of MoTor signalling in M. oryzae.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。