Alcohol Acutely Antagonizes Refeeding-Induced Alterations in the Rag GTPase-Ragulator Complex in Skeletal Muscle

酒精急性拮抗再进食引起的骨骼肌 Rag GTPase-Ragulator 复合物的改变

阅读:6
作者:Lacee J Laufenberg, Kristen T Crowell, Charles H Lang

Abstract

The Ragulator protein complex is critical for directing the Rag GTPase proteins and mTORC1 to the lysosome membrane mediating amino acid-stimulated protein synthesis. As there is a lack of evidence on alcohol's effect on the Rag-Ragulator complex as a possible mechanism for the development of alcoholic skeletal muscle wasting, the aim of our study was to examine alterations in various protein-protein complexes in the Rag-Ragulator pathway produced acutely by feeding and how these are altered by alcohol under in vivo conditions. Mice (C57Bl/6; adult males) were fasted, and then provided rodent chow for 30 min ("refed") or remained food-deprived ("fasted"). Mice subsequently received ethanol (3 g/kg ethanol) or saline intraperitoneally, and hindlimb muscles were collected 1 h thereafter for analysis. Refeeding-induced increases in myofibrillar and sarcoplasmic protein synthesis, and mTOR and S6K1 phosphorylation, were prevented by alcohol. This inhibition was not associated with a differential rise in the intracellular leucine concentration or plasma leucine or insulin levels. Alcohol increased the amount of the Sestrin1•GATOR2 complex in the fasted state and prevented the refeeding-induced decrease in Sestrin1•GATOR2 seen in control mice. Alcohol antagonized the increase in the RagA/C•Raptor complex formation seen in the refed state. Alcohol antagonized the increase in Raptor with immunoprecipitated LAMPTOR1 (part of the Ragulator complex) after refeeding and decreased the association of RagC with LAMPTOR1. Finally, alcohol increased the association of the V1 domain of v-ATPase with LAMPTOR1 and prevented the refeeding-induced decrease in v-ATPase V1 with LAMPTOR1. Overall, these data demonstrate that acute alcohol intake disrupts multiple protein-protein complexes within the Rag-Ragulator complex, which are associated with and consistent with the concomitant decline in nutrient-stimulated muscle protein synthesis under in vivo conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。