Composition of receptor tyrosine kinase-mediated lipid micro-domains controlled by adaptor protein interaction

受体酪氨酸激酶介导的脂质微区组成受衔接蛋白相互作用控制

阅读:7
作者:Arndt Rohwedder, Sabine Knipp, Lee D Roberts, John E Ladbury

Abstract

Receptor tyrosine kinases (RTKs) are highly regulated, single pass transmembrane proteins, fundamental to cellular function and survival. Aberrancies in regulation lead to corruption of signal transduction and a range of pathological outcomes. Although control mechanisms associated with the receptors and their ligands are well understood, little is known with respect to the impact of lipid/lipid and lipid/protein interactions in the proximal plasma membrane environment. Given that the transmembrane regions of RTKs change in response to extracellular ligand binding, the lipid interactions have important consequences in influencing signal transduction. Fibroblast growth factor receptor 2 (FGFR2) is a highly regulated RTK, including under basal conditions. Binding of the adaptor protein, growth factor receptor-bound protein 2 (GRB2) to FGFR2 prevents full activation and recruitment of downstream signalling effector proteins in the absence of extracellular stimulation. Here we demonstrate that the FGFR2-GRB2 complex is sustained in a defined lipid environment. Dissociation of GRB2 from this complex due to ligand binding, or reduced GRB2 expression, facilitates the dispersion of FGFR2 into detergent-resistant membrane (DRM) micro-domains. This modification of the plasma membrane proximal to FGFR2 provides a further regulatory checkpoint which controls receptor degradation, recycling and recruitment of intracellular signalling proteins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。