Synthesis, microstructure, multifunctional properties of mayenite Ca12Al14O33 (C12A7) cement and graphene oxide (GO) composites

钙铝石 Ca12Al14O33(C12A7)水泥和氧化石墨烯(GO)复合材料的合成、微观结构和多功能特性

阅读:4
作者:Chaval Sriwong, Chaiwat Phrompet, Wattana Tuichai, Attaphol Karaphun, Ken Kurosaki, Chesta Ruttanapun

Abstract

The Pristine Mayenite Ca12Al14O33 (C12A7) Cement was simply synthesized by using solid-state reaction. The C12A7 and Graphene Oxide (GO) composites (C12A7_GO-x) with various contents of the GO suspension loading (x = 0 wt%, 1 wt%, 2 wt%, 3 wt%, and 4 wt%) were directly prepared by mixing the C12A7 and GO. X-ray diffraction results of pristine C12A7 and all C12A7_GO composites indicated a pure phase corresponding to the standard of C12A7 cement. Raman spectroscopy confirmed the existence of GO in all C12A7_GO samples. Scanning Electron Microscopy (SEM) showed the micrometer grain sizes and the occurrence of grain boundary interfaces for GO incorporation in all C12A7_GO samples. UV-Vis spectroscopy revealed the absorption value of all C12A7_GO samples and red shift near longer wavelengths when increasing the GO concentrations. The dielectric constant of C12A7_GO composites can be explained by the high density of free electron charges for the interfacial polarization on the GO surface. The maximum specific capacitance of C12A7_GO-4 electrode of 21.514 at a current density of 0.2 A g-1 can be attributed to the increase in the electrochemically active surface area for the formation of the electrical double layer capacitors behavior and the effects of high surface area GO connections. Also, the mechanical properties exhibited an increase in Vickers indenter hardness (HV) values with increasing GO contents. The highest HV value was 117.8 HV/2 kg at the C12A7_GO-4 sample. These results showed that the composite materials of the pristine C12A7 cement with GO were highly efficient. All in all, the GO material contained a high potential for enhancing low-cost cement materials in multifunctional properties such as optical, dielectric, electrochemical, and mechanical properties.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。