Differential modulation and subsequent blockade of mitogenic signaling and cell cycle progression by Pasteurella multocida toxin

多杀性巴氏杆菌毒素对有丝分裂信号和细胞周期进程的差异调节和随后的阻断

阅读:4
作者:B A Wilson, L R Aminova, V G Ponferrada, M Ho

Abstract

The intracellularly acting protein toxin of Pasteurella multocida (PMT) causes numerous effects in cells, including activation of inositol 1,4,5-trisphosphate (IP(3)) signaling, Ca(2+) mobilization, protein phosphorylation, morphological changes, and DNA synthesis. The direct intracellular target of PMT responsible for activation of the IP(3) pathway is the G(q/11)alpha-protein, which stimulates phospholipase C (PLC) beta1. The relationship between PMT-mediated activation of the G(q/11)-PLC-IP(3) pathway and its ability to promote mitogenesis and cellular proliferation is not clear. PMT stimulation of p42/p44 mitogen-activated protein kinase occurs upstream via G(q/11)-dependent transactivation of the epidermal growth factor receptor. We have further characterized the effects of PMT on the downstream mitogenic response and cell cycle progression in Swiss 3T3 and Vero cells. PMT treatment caused dramatic morphological changes in both cell lines. In Vero cells, limited multinucleation, nuclear fragmentation, and disruption of cytokinesis were also observed; however, a strong mitogenic response occurred only with Swiss 3T3 cells. Significantly, this mitogenic response was not sustained. Cell cycle analysis revealed that after the initial mitogenic response to PMT, both cell types subsequently arrested primarily in G(1) and became unresponsive to further PMT treatment. In Swiss 3T3 cells, PMT induced up-regulation of c-Myc; cyclins D1, D2, D3, and E; p21; PCNA; and the Rb proteins, p107 and p130. In Vero cells, PMT failed to up-regulate PCNA and cyclins D3 and E. We also found that the initial PMT-mediated up-regulation of several of these signaling proteins was not sustained, supporting the subsequent cell cycle arrest. The consequences of PMT entry thus depend on the differential regulation of signaling pathways within different cell types.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。