Maize kernel metabolome involved in resistance to fusarium ear rot and fumonisin contamination

玉米粒代谢组参与抵抗镰刀菌穗腐病和伏马菌素污染

阅读:7
作者:Ana Cao, Noemi Gesteiro, Rogelio Santiago, Rosa Ana Malvar, Ana Butrón

Abstract

Fusarium verticillioides poses a threat to worldwide maize production due to its ability to infect maize kernel and synthesize fumonisins that can be accumulated above safety levels for humans and animals. Maize breeding has been proposed as key tool to decrease kernel contamination with fumonisins, but metabolic studies complementary to genomic approaches are necessary to disclose the complexity of maize resistance. An untargeted metabolomic study was proposed using inbreds genetically related but with contrasting levels of resistance in order to uncover pathways implicated in resistance to Fusarium ear rot (FER) and fumonisin contamination in the maize kernel and to look for possible biomarkers. Metabolite determinations were performed in kernels collected at 3 and 10 days after inoculation with F. verticillioides (dat). Discriminant metabolites between resistant and susceptible RILs were rather found at 10 than 3 dat, although metabolite differences at later stages of colonization could be driven by subtle variations at earlier stages of infection. Within this context, differences for membrane lipid homeostasis, methionine metabolism, and indolacetic acid conjugation seemed highly relevant to distinguish between resistant and susceptible inbreds, confirming the polygenic nature of resistance to FER and fumonisin contamination in the maize kernels. Nevertheless, some specific metabolites such as the polyamine spermidine and/or the alkaloid isoquinoline seemed to be promising indirect selection traits to improve resistance to FER and reduce fumonisin accumulation. Therefore, in vitro and in vivo experiments will be necessary to validate the inhibitory effects of these compounds on fumonisins biosynthesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。