Novel role of the clustered miR-23b-3p and miR-27b-3p in enhanced expression of fibrosis-associated genes by targeting TGFBR3 in atrial fibroblasts

聚集的 miR-23b-3p 和 miR-27b-3p 通过靶向心房成纤维细胞中的 TGFBR3 增强纤维化相关基因表达的新作用

阅读:5
作者:Zhenzhen Yang, Zhen Xiao, Huiming Guo, Xianhong Fang, Jingnan Liang, Jiening Zhu, Jing Yang, Hui Li, Rong Pan, Shujing Yuan, Wenyan Dong, Xi-Long Zheng, Shulin Wu, Zhixin Shan

Abstract

Atrial fibrillation (AF) is the most common type of arrhythmia in cardiovascular diseases. Atrial fibrosis is an important pathophysiological contributor to AF. This study aimed to investigate the role of the clustered miR-23b-3p and miR-27b-3p in atrial fibrosis. Human atrial fibroblasts (HAFs) were isolated from atrial appendage tissue of patients with sinus rhythm. A cell model of atrial fibrosis was achieved in Ang-II-induced HAFs. Cell proliferation and migration were detected. We found that miR-23b-3p and miR-27b-3p were markedly increased in atrial appendage tissues of AF patients and in Ang-II-treated HAFs. Overexpression of miR-23b-3p and miR-27b-3p enhanced the expression of collagen, type I, alpha 1 (COL1A1), COL3A1 and ACTA2 in HAFs without significant effects on their proliferation and migration. Luciferase assay showed that miR-23b-3p and miR-27b-3p targeted two different sites in 3'-UTR of transforming growth factor (TGF)-β1 receptor 3 (TGFBR3) respectively. Consistently, TGFBR3 siRNA could increase fibrosis-related genes expression, along with the Smad1 inactivation and Smad3 activation in HAFs. Additionally, overexpression of TGFBR3 could alleviate the increase of COL1A1, COL3A1 and ACTA2 in HAFs after transfection with miR-23b-3p and miR-27b-3p respectively. Moreover, Smad3 was activated in HAFs in response to Ang-II treatment and inactivation of Smad3 attenuated up-regulation of miR-23b-3p and miR-27b-3p in Ang-II-treated HAFs. Taken together, these results suggest that the clustered miR-23b-3p and miR-27b-3p consistently promote atrial fibrosis by targeting TGFBR3 to activate Smad3 signalling in HAFs, suggesting that miR-23b-3p and miR-27b-3p are potential therapeutic targets for atrial fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。