Hepatocytic transcriptional signatures predict comparative drug interaction potential of rifamycin antibiotics

肝细胞转录特征预测利福霉素抗生素的比较药物相互作用潜力

阅读:9
作者:Shetty Ravi Dyavar, Timothy M Mykris, Lee C Winchester, Kimberly K Scarsi, Courtney V Fletcher, Anthony T Podany

Abstract

Current strategies to treat tuberculosis (TB) and co-morbidities involve multidrug combination therapies. Rifamycin antibiotics are a key component of TB therapy and a common source of drug-drug interactions (DDIs) due to induction of drug metabolizing enzymes (DMEs). Management of rifamycin DDIs are complex, particularly in patients with co-morbidities, and differences in DDI potential between rifamycin antibiotics are not well established. DME profiles induced in response to tuberculosis antibiotics (rifampin, rifabutin and rifapentine) were compared in primary human hepatocytes. We identified rifamycin induced DMEs, cytochrome P450 (CYP) 2C8/3A4/3A5, SULT2A, and UGT1A4/1A5 and predicted lower DDIs of rifapentine with 58 clinical drugs used to treat co-morbidities in TB patients. Transcriptional networks and upstream regulator analyses showed FOXA3, HNF4α, NR1I2, NR1I3, NR3C1 and RXRα as key transcriptional regulators of rifamycin induced DMEs. Our study findings are an important resource to design effective medication regimens to treat common co-conditions in TB patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。