Activation of RSK by phosphomimetic substitution in the activation loop is prevented by structural constraints

结构限制阻止了通过活化环中的磷酸化模拟物取代来活化 RSK

阅读:6
作者:Desiana Somale, Giovanna Di Nardo, Laura di Blasio, Alberto Puliafito, Marianela Vara-Messler, Giulia Chiaverina, Miriam Palmiero, Valentina Monica, Gianfranco Gilardi, Luca Primo #, Paolo Armando Gagliardi #

Abstract

The activation of the majority of AGC kinases is regulated by two phosphorylation events on two conserved serine/threonine residues located on the activation loop and on the hydrophobic motif, respectively. In AGC kinase family, phosphomimetic substitutions with aspartate or glutamate, leading to constitutive activation, have frequently occurred at the hydrophobic motif site. On the contrary, phosphomimetic substitutions in the activation loop are absent across the evolution of AGC kinases. This observation is explained by the failure of aspartate and glutamate to mimic phosphorylatable serine/threonine in this regulatory site. By detailed 3D structural simulations of RSK2 and further biochemical evaluation in cells, we show that the phosphomimetic residue on the activation loop fails to form a critical salt bridge with R114, necessary to reorient the αC-helix and to activate the protein. By a phylogenetic analysis, we point at a possible coevolution of a phosphorylatable activation loop and the presence of a conserved positively charged amino acid on the αC-helix. In sum, our analysis leads to the unfeasibility of phosphomimetic substitution in the activation loop of RSK and, at the same time, highlights the peculiar structural role of activation loop phosphorylation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。