Key role of down-regulated in adenoma (SLC26A3) chloride/bicarbonate exchanger in linaclotide-stimulated intestinal bicarbonate secretion upon loss of CFTR function

腺瘤 (SLC26A3) 中下调的氯化物/碳酸氢盐交换器在 CFTR 功能丧失后利那洛肽刺激的肠道碳酸氢盐分泌中起关键作用

阅读:8
作者:Jessica B Sarthi, Annie M Trumbull, Shayda M Abazari, Vincent van Unen, Joshua E Chan, Yanfen Jiang, Jesse Gammons, Marc O Anderson, Onur Cil, Calvin J Kuo, Zachary M Sellers

Abstract

Duodenal bicarbonate secretion is critical to epithelial protection, nutrient digestion/absorption and is impaired in cystic fibrosis (CF). We examined if linaclotide, typically used to treat constipation, may also stimulate duodenal bicarbonate secretion. Bicarbonate secretion was measured in vivo and in vitro using mouse and human duodenum (biopsies and enteroids). Ion transporter localization was identified with confocal microscopy and de novo analysis of human duodenal single cell RNA sequencing (sc-RNAseq) datasets was performed. Linaclotide increased bicarbonate secretion in mouse and human duodenum in the absence of CFTR expression (Cftr knockout mice) or function (CFTRinh-172). NHE3 inhibition contributed to a portion of this response. Linaclotide-stimulated bicarbonate secretion was eliminated by down-regulated in adenoma (DRA, SLC26A3) inhibition during loss of CFTR activity. Sc-RNAseq identified that 70% of villus cells expressed SLC26A3, but not CFTR, mRNA. Loss of CFTR activity and linaclotide increased apical brush border expression of DRA in non-CF and CF differentiated enteroids. These data provide further insights into the action of linaclotide and how DRA may compensate for loss of CFTR in regulating luminal pH. Linaclotide may be a useful therapy for CF individuals with impaired bicarbonate secretion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。