Identification and functional characterization of polymorphisms in human cyclooxygenase-1 (PTGS1)

人类环氧合酶-1(PTGS1)多态性的鉴定和功能表征

阅读:5
作者:Craig R Lee, Frank G Bottone Jr, Joseph M Krahn, Leping Li, Harvey W Mohrenweiser, Molly E Cook, Robert M Petrovich, Douglas A Bell, Thomas E Eling, Darryl C Zeldin

Conclusions

Our findings demonstrate that several genetic variants in human COX-1 significantly alter basal COX-1-mediated arachidonic acid metabolism and indomethacin-mediated inhibition of COX-1 activity in vitro. Future studies characterizing the functional impact of these variants in vivo are warranted.

Methods

Sequence variations in human PTGS1 were identified by resequencing 92 healthy individuals (24 African, 24 Asian, 24 European/Caucasian, and 20 anonymous). Using site-directed mutagenesis and a baculovirus/insect cell expression system, recombinant wild-type COX-1 and the R8W, P17L, R53H, R78W, K185T, G230S, L237M, and V481I variant proteins were expressed. COX-1 metabolic activity was evaluated in vitro using an oxygen consumption assay under basal conditions and in the presence of indomethacin.

Objective

Cyclooxygenase-1 (COX-1, PTGS1) catalyzes the conversion of arachidonic acid to prostaglandin H2, which is subsequently metabolized to various biologically active prostaglandins. We sought to identify and characterize the functional relevance of genetic polymorphisms in PTGS1.

Results

Forty-five variants were identified, including seven nonsynonymous polymorphisms encoding amino acid substitutions in the COX-1 protein. The R53H (35+/-5%), R78W (36+/-4%), K185T (59+/-6%), G230S (57+/-4%), and L237M (51+/-3%) variant proteins had significantly lower metabolic activity relative to wild-type (100+/-7%), while no significant differences were observed with the R8W (104+/-10%), P17L (113+/-7%), and V481I (121+/-10%) variants. Inhibition studies with indomethacin demonstrated that the P17L and G230S variants had significantly lower IC50 values compared to wild-type, suggesting these variants significantly increase COX-1 sensitivity to indomethacin inhibition. Consistent with the metabolic activity data, protein modeling suggested the G230S variant may disrupt the active conformation of COX-1. Conclusions: Our findings demonstrate that several genetic variants in human COX-1 significantly alter basal COX-1-mediated arachidonic acid metabolism and indomethacin-mediated inhibition of COX-1 activity in vitro. Future studies characterizing the functional impact of these variants in vivo are warranted.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。